3.1.32 \(\int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))^2} \, dx\) [32]

3.1.32.1 Optimal result
3.1.32.2 Mathematica [A] (verified)
3.1.32.3 Rubi [A] (warning: unable to verify)
3.1.32.4 Maple [A] (verified)
3.1.32.5 Fricas [C] (verification not implemented)
3.1.32.6 Sympy [F]
3.1.32.7 Maxima [F(-2)]
3.1.32.8 Giac [F]
3.1.32.9 Mupad [B] (verification not implemented)

3.1.32.1 Optimal result

Integrand size = 25, antiderivative size = 281 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))^2} \, dx=-\frac {3 \arctan \left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 a^2 d \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 \sqrt {2} a^2 d \sqrt {e}}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 \sqrt {2} a^2 d \sqrt {e}}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2+a^2 \cot (c+d x)\right )}+\frac {\log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{4 \sqrt {2} a^2 d \sqrt {e}}-\frac {\log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{4 \sqrt {2} a^2 d \sqrt {e}} \]

output
-3/2*arctan((e*cot(d*x+c))^(1/2)/e^(1/2))/a^2/d/e^(1/2)-1/4*arctan(1-2^(1/ 
2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/a^2/d*2^(1/2)/e^(1/2)+1/4*arctan(1+2^(1/2 
)*(e*cot(d*x+c))^(1/2)/e^(1/2))/a^2/d*2^(1/2)/e^(1/2)+1/8*ln(e^(1/2)+cot(d 
*x+c)*e^(1/2)-2^(1/2)*(e*cot(d*x+c))^(1/2))/a^2/d*2^(1/2)/e^(1/2)-1/8*ln(e 
^(1/2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))^(1/2))/a^2/d*2^(1/2)/e^(1 
/2)-1/2*(e*cot(d*x+c))^(1/2)/d/e/(a^2+a^2*cot(d*x+c))
 
3.1.32.2 Mathematica [A] (verified)

Time = 1.60 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.47 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))^2} \, dx=-\frac {3 e^{3/2} \arctan \left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )+\left (-e^2\right )^{3/4} \arctan \left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt [4]{-e^2}}\right )-\left (-e^2\right )^{3/4} \text {arctanh}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt [4]{-e^2}}\right )+\frac {e \sqrt {e \cot (c+d x)}}{1+\cot (c+d x)}}{2 a^2 d e^2} \]

input
Integrate[1/(Sqrt[e*Cot[c + d*x]]*(a + a*Cot[c + d*x])^2),x]
 
output
-1/2*(3*e^(3/2)*ArcTan[Sqrt[e*Cot[c + d*x]]/Sqrt[e]] + (-e^2)^(3/4)*ArcTan 
[Sqrt[e*Cot[c + d*x]]/(-e^2)^(1/4)] - (-e^2)^(3/4)*ArcTanh[Sqrt[e*Cot[c + 
d*x]]/(-e^2)^(1/4)] + (e*Sqrt[e*Cot[c + d*x]])/(1 + Cot[c + d*x]))/(a^2*d* 
e^2)
 
3.1.32.3 Rubi [A] (warning: unable to verify)

Time = 1.21 (sec) , antiderivative size = 249, normalized size of antiderivative = 0.89, number of steps used = 23, number of rules used = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.880, Rules used = {3042, 4052, 27, 3042, 4136, 27, 2030, 3042, 3957, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103, 4117, 27, 73, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a \cot (c+d x)+a)^2 \sqrt {e \cot (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )^2 \sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4052

\(\displaystyle -\frac {\int -\frac {e \cot ^2(c+d x) a^2+3 e a^2-2 e \cot (c+d x) a^2}{2 \sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx}{2 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {e \cot ^2(c+d x) a^2+3 e a^2-2 e \cot (c+d x) a^2}{\sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {e \tan \left (c+d x+\frac {\pi }{2}\right )^2 a^2+3 e a^2+2 e \tan \left (c+d x+\frac {\pi }{2}\right ) a^2}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 4136

\(\displaystyle \frac {3 a^2 e \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx+\frac {\int -\frac {4 a^3 e \cot (c+d x)}{\sqrt {e \cot (c+d x)}}dx}{2 a^2}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 a^2 e \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx-2 a e \int \frac {\cot (c+d x)}{\sqrt {e \cot (c+d x)}}dx}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 2030

\(\displaystyle \frac {3 a^2 e \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx-2 a \int \sqrt {e \cot (c+d x)}dx}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 a^2 e \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx-2 a \int \sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}dx}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 3957

\(\displaystyle \frac {3 a^2 e \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {2 a e \int \frac {\sqrt {e \cot (c+d x)}}{\cot ^2(c+d x) e^2+e^2}d(e \cot (c+d x))}{d}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {3 a^2 e \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e \int \frac {e^2 \cot ^2(c+d x)}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}}{d}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {3 a^2 e \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e \left (\frac {1}{2} \int \frac {e^2 \cot ^2(c+d x)+e}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}-\frac {1}{2} \int \frac {e-e^2 \cot ^2(c+d x)}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}\right )}{d}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {3 a^2 e \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{e^2 \cot ^2(c+d x)-\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}+\frac {1}{2} \int \frac {1}{e^2 \cot ^2(c+d x)+\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}\right )-\frac {1}{2} \int \frac {e-e^2 \cot ^2(c+d x)}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}\right )}{d}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {3 a^2 e \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e \left (\frac {1}{2} \left (\frac {\int \frac {1}{-e^2 \cot ^2(c+d x)-1}d\left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}-\frac {\int \frac {1}{-e^2 \cot ^2(c+d x)-1}d\left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \int \frac {e-e^2 \cot ^2(c+d x)}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}\right )}{d}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {3 a^2 e \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \int \frac {e-e^2 \cot ^2(c+d x)}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}\right )}{d}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {3 a^2 e \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e \left (\frac {1}{2} \left (\frac {\int -\frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{e^2 \cot ^2(c+d x)-\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int -\frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{e^2 \cot ^2(c+d x)+\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {3 a^2 e \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{e^2 \cot ^2(c+d x)-\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int \frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{e^2 \cot ^2(c+d x)+\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 a^2 e \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{e^2 \cot ^2(c+d x)-\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int \frac {\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}}{e^2 \cot ^2(c+d x)+\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {3 a^2 e \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\log \left (-\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {\frac {3 a^2 e \int \frac {1}{a \sqrt {e \cot (c+d x)} (\cot (c+d x)+1)}d(-\cot (c+d x))}{d}+\frac {4 a e \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\log \left (-\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {3 a e \int \frac {1}{\sqrt {e \cot (c+d x)} (\cot (c+d x)+1)}d(-\cot (c+d x))}{d}+\frac {4 a e \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\log \left (-\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\frac {4 a e \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\log \left (-\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d}-\frac {6 a \int \frac {1}{\frac {\cot ^2(c+d x)}{e}+1}d\sqrt {e \cot (c+d x)}}{d}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {4 a e \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\log \left (-\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d}+\frac {6 a \sqrt {e} \arctan \left (\frac {\cot (c+d x)}{\sqrt {e}}\right )}{d}}{4 a^3 e}-\frac {\sqrt {e \cot (c+d x)}}{2 d e \left (a^2 \cot (c+d x)+a^2\right )}\)

input
Int[1/(Sqrt[e*Cot[c + d*x]]*(a + a*Cot[c + d*x])^2),x]
 
output
-1/2*Sqrt[e*Cot[c + d*x]]/(d*e*(a^2 + a^2*Cot[c + d*x])) + ((6*a*Sqrt[e]*A 
rcTan[Cot[c + d*x]/Sqrt[e]])/d + (4*a*e*((-(ArcTan[1 - Sqrt[2]*Sqrt[e]*Cot 
[c + d*x]]/(Sqrt[2]*Sqrt[e])) + ArcTan[1 + Sqrt[2]*Sqrt[e]*Cot[c + d*x]]/( 
Sqrt[2]*Sqrt[e]))/2 + (Log[e - Sqrt[2]*e^(3/2)*Cot[c + d*x] + e^2*Cot[c + 
d*x]^2]/(2*Sqrt[2]*Sqrt[e]) - Log[e + Sqrt[2]*e^(3/2)*Cot[c + d*x] + e^2*C 
ot[c + d*x]^2]/(2*Sqrt[2]*Sqrt[e]))/2))/d)/(4*a^3*e)
 

3.1.32.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 

rule 4052
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c 
+ d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + Simp[1 
/((m + 1)*(a^2 + b^2)*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + 
d*Tan[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - 
 a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x], x], x] / 
; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] 
 && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || Integ 
erQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4136
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^ 
n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[ 
(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*((1 + Tan[ 
e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, 
 C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] & 
&  !GtQ[n, 0] &&  !LeQ[n, -1]
 
3.1.32.4 Maple [A] (verified)

Time = 0.04 (sec) , antiderivative size = 197, normalized size of antiderivative = 0.70

method result size
derivativedivides \(-\frac {2 e^{3} \left (-\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{16 e^{3} \left (e^{2}\right )^{\frac {1}{4}}}+\frac {\frac {\sqrt {e \cot \left (d x +c \right )}}{2 e \cot \left (d x +c \right )+2 e}+\frac {3 \arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{2 \sqrt {e}}}{2 e^{3}}\right )}{d \,a^{2}}\) \(197\)
default \(-\frac {2 e^{3} \left (-\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{16 e^{3} \left (e^{2}\right )^{\frac {1}{4}}}+\frac {\frac {\sqrt {e \cot \left (d x +c \right )}}{2 e \cot \left (d x +c \right )+2 e}+\frac {3 \arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{2 \sqrt {e}}}{2 e^{3}}\right )}{d \,a^{2}}\) \(197\)

input
int(1/(e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
-2/d/a^2*e^3*(-1/16/e^3/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^(1/4)* 
(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot 
(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d 
*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))+1/2 
/e^3*(1/2*(e*cot(d*x+c))^(1/2)/(e*cot(d*x+c)+e)+3/2/e^(1/2)*arctan((e*cot( 
d*x+c))^(1/2)/e^(1/2))))
 
3.1.32.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.30 (sec) , antiderivative size = 1181, normalized size of antiderivative = 4.20 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))^2} \, dx=\text {Too large to display} \]

input
integrate(1/(e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c))^2,x, algorithm="fricas")
 
output
[-1/4*(3*sqrt(-e)*(cos(2*d*x + 2*c) + sin(2*d*x + 2*c) + 1)*log((e*cos(2*d 
*x + 2*c) - e*sin(2*d*x + 2*c) + 2*sqrt(-e)*sqrt((e*cos(2*d*x + 2*c) + e)/ 
sin(2*d*x + 2*c))*sin(2*d*x + 2*c) + e)/(cos(2*d*x + 2*c) + sin(2*d*x + 2* 
c) + 1)) - (a^2*d*e*cos(2*d*x + 2*c) + a^2*d*e*sin(2*d*x + 2*c) + a^2*d*e) 
*(-1/(a^8*d^4*e^2))^(1/4)*log(a^6*d^3*e^2*(-1/(a^8*d^4*e^2))^(3/4) + sqrt( 
(e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))) + (I*a^2*d*e*cos(2*d*x + 2*c) 
+ I*a^2*d*e*sin(2*d*x + 2*c) + I*a^2*d*e)*(-1/(a^8*d^4*e^2))^(1/4)*log(I*a 
^6*d^3*e^2*(-1/(a^8*d^4*e^2))^(3/4) + sqrt((e*cos(2*d*x + 2*c) + e)/sin(2* 
d*x + 2*c))) + (-I*a^2*d*e*cos(2*d*x + 2*c) - I*a^2*d*e*sin(2*d*x + 2*c) - 
 I*a^2*d*e)*(-1/(a^8*d^4*e^2))^(1/4)*log(-I*a^6*d^3*e^2*(-1/(a^8*d^4*e^2)) 
^(3/4) + sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))) + (a^2*d*e*cos(2 
*d*x + 2*c) + a^2*d*e*sin(2*d*x + 2*c) + a^2*d*e)*(-1/(a^8*d^4*e^2))^(1/4) 
*log(-a^6*d^3*e^2*(-1/(a^8*d^4*e^2))^(3/4) + sqrt((e*cos(2*d*x + 2*c) + e) 
/sin(2*d*x + 2*c))) + 2*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*si 
n(2*d*x + 2*c))/(a^2*d*e*cos(2*d*x + 2*c) + a^2*d*e*sin(2*d*x + 2*c) + a^2 
*d*e), -1/4*(6*sqrt(e)*(cos(2*d*x + 2*c) + sin(2*d*x + 2*c) + 1)*arctan(sq 
rt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))/sqrt(e)) - (a^2*d*e*cos(2*d* 
x + 2*c) + a^2*d*e*sin(2*d*x + 2*c) + a^2*d*e)*(-1/(a^8*d^4*e^2))^(1/4)*lo 
g(a^6*d^3*e^2*(-1/(a^8*d^4*e^2))^(3/4) + sqrt((e*cos(2*d*x + 2*c) + e)/sin 
(2*d*x + 2*c))) + (I*a^2*d*e*cos(2*d*x + 2*c) + I*a^2*d*e*sin(2*d*x + 2...
 
3.1.32.6 Sympy [F]

\[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))^2} \, dx=\frac {\int \frac {1}{\sqrt {e \cot {\left (c + d x \right )}} \cot ^{2}{\left (c + d x \right )} + 2 \sqrt {e \cot {\left (c + d x \right )}} \cot {\left (c + d x \right )} + \sqrt {e \cot {\left (c + d x \right )}}}\, dx}{a^{2}} \]

input
integrate(1/(e*cot(d*x+c))**(1/2)/(a+a*cot(d*x+c))**2,x)
 
output
Integral(1/(sqrt(e*cot(c + d*x))*cot(c + d*x)**2 + 2*sqrt(e*cot(c + d*x))* 
cot(c + d*x) + sqrt(e*cot(c + d*x))), x)/a**2
 
3.1.32.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate(1/(e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c))^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.1.32.8 Giac [F]

\[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))^2} \, dx=\int { \frac {1}{{\left (a \cot \left (d x + c\right ) + a\right )}^{2} \sqrt {e \cot \left (d x + c\right )}} \,d x } \]

input
integrate(1/(e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c))^2,x, algorithm="giac")
 
output
integrate(1/((a*cot(d*x + c) + a)^2*sqrt(e*cot(d*x + c))), x)
 
3.1.32.9 Mupad [B] (verification not implemented)

Time = 13.14 (sec) , antiderivative size = 366, normalized size of antiderivative = 1.30 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))^2} \, dx=\frac {\mathrm {atan}\left (\frac {4\,e^8\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,{\left (-\frac {1}{a^8\,d^4\,e^2}\right )}^{1/4}}{\frac {4\,e^8}{a^2\,d}+36\,a^2\,d\,e^9\,\sqrt {-\frac {1}{a^8\,d^4\,e^2}}}+\frac {36\,e^9\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,{\left (-\frac {1}{a^8\,d^4\,e^2}\right )}^{3/4}}{\frac {4\,e^8}{a^6\,d^3}+\frac {36\,e^9\,\sqrt {-\frac {1}{a^8\,d^4\,e^2}}}{a^2\,d}}\right )\,{\left (-\frac {1}{a^8\,d^4\,e^2}\right )}^{1/4}}{2}+\mathrm {atan}\left (\frac {e^8\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,{\left (-\frac {1}{256\,a^8\,d^4\,e^2}\right )}^{1/4}\,16{}\mathrm {i}}{\frac {4\,e^8}{a^2\,d}-576\,a^2\,d\,e^9\,\sqrt {-\frac {1}{256\,a^8\,d^4\,e^2}}}-\frac {e^9\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,{\left (-\frac {1}{256\,a^8\,d^4\,e^2}\right )}^{3/4}\,2304{}\mathrm {i}}{\frac {4\,e^8}{a^6\,d^3}-\frac {576\,e^9\,\sqrt {-\frac {1}{256\,a^8\,d^4\,e^2}}}{a^2\,d}}\right )\,{\left (-\frac {1}{256\,a^8\,d^4\,e^2}\right )}^{1/4}\,2{}\mathrm {i}-\frac {\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{2\,\left (a^2\,d\,e+a^2\,d\,e\,\mathrm {cot}\left (c+d\,x\right )\right )}-\frac {\mathrm {atan}\left (\frac {\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,1{}\mathrm {i}}{\sqrt {-e}}\right )\,3{}\mathrm {i}}{2\,a^2\,d\,\sqrt {-e}} \]

input
int(1/((e*cot(c + d*x))^(1/2)*(a + a*cot(c + d*x))^2),x)
 
output
(atan((4*e^8*(e*cot(c + d*x))^(1/2)*(-1/(a^8*d^4*e^2))^(1/4))/((4*e^8)/(a^ 
2*d) + 36*a^2*d*e^9*(-1/(a^8*d^4*e^2))^(1/2)) + (36*e^9*(e*cot(c + d*x))^( 
1/2)*(-1/(a^8*d^4*e^2))^(3/4))/((4*e^8)/(a^6*d^3) + (36*e^9*(-1/(a^8*d^4*e 
^2))^(1/2))/(a^2*d)))*(-1/(a^8*d^4*e^2))^(1/4))/2 + atan((e^8*(e*cot(c + d 
*x))^(1/2)*(-1/(256*a^8*d^4*e^2))^(1/4)*16i)/((4*e^8)/(a^2*d) - 576*a^2*d* 
e^9*(-1/(256*a^8*d^4*e^2))^(1/2)) - (e^9*(e*cot(c + d*x))^(1/2)*(-1/(256*a 
^8*d^4*e^2))^(3/4)*2304i)/((4*e^8)/(a^6*d^3) - (576*e^9*(-1/(256*a^8*d^4*e 
^2))^(1/2))/(a^2*d)))*(-1/(256*a^8*d^4*e^2))^(1/4)*2i - (e*cot(c + d*x))^( 
1/2)/(2*(a^2*d*e + a^2*d*e*cot(c + d*x))) - (atan(((e*cot(c + d*x))^(1/2)* 
1i)/(-e)^(1/2))*3i)/(2*a^2*d*(-e)^(1/2))